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NUMERICAL SOLUTION OF THE INVERSE PROBLEM OF HEAT CONDUCTION 

BY USING REGULARIZED DIFFERENCE SCHEMES 

P. N. Vabishchevich UDC 519,63 

The stability of difference schemes is investigated for the approximate solution 
of a multidimensional incorrect heat-conduction problem with inverse time. 

Among the inverse problems of heat transfer [I], the problem with inverse time for the 
heat-conduction equation that belongs to the A. N. Tikhonov conditionally correct class at- 
tracts a great deal of attention. The general approach to the solution of unstable problems 
is formulated in [2] on the basis of the method of regularization. The method of quasiinver- 
sion [3] which consists in perturbing the initial equation has received wide propagation for 
differential equations. Of the later modifications of this method we note that described in 
[4] where a "pseudoparabolic" perturbation of the original equation as well as a "hyperbolic" 
modification are examined [i]. The stability of appropriate difference schemes of the quasi- 
inversion method is investigated in [5, 6]. 

Regularization of difference schemes is achieved in this paper by selecting a negative 
weight in the usual scheme with weights [7]. Economical difference schemes analogous to the 
locally one-dimensional schemes [7] in solving the direct heat conduction problem, are pro- 
posed in the multidimensional case. General results of the A. A. Samarskii [8] theory of 
stability of difference schemes are used in investigating the stability�9 

FOP~KFLATION OF THE PROBLEM 

Let ~ denote a n-dimensionalparallelepiped: ~ = {xlx ~ (xl, x2,, x~), O<x~<lh, k 
I, 2, ..., n}. 

For xC~ let us determine the uniform elliptical operator L: 

h=l ~ OXh 

with sufficiently smooth coefficients cth(x~) ~ a o > O ,  k~ -1 ,  2, . . . ,  n 
satisfies the heat-conduction equation with inverse time 

Ou 
O--7 -+ tu=O,  x 6 f L  tES=(O, T), T>O, 

�9 The function u(x, t) 

(1) 
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and the boundary and initial conditions 

u(x, t)=O, x6a~, t6s,  

u (x, o) = uo (x), x E a .  

In ~ we introduce a difference mesh ~h that is uniform in every direction 

(2) 

(3) 

Oh = COb + ?h = {X = (ilh t, i~h 2 . . . . .  i,~h,~), 

i h = O ,  1 . . . . .  Nh, N ~ h h = l k ,  k =  I, 2 . . . . .  n}. 

Here ~k is the set of inner, and Yh the boundary nodes of the mesh. We approximate the 

operator L in ~h by the mesh operator A = A~ of second order, where A~g= (dhY~)x~ in the 
k= I 

standard notation of the theory of difference schemes [7], while d~(xh)---ak(xk--h~/2). Taking 
account of the notation introduced, let us write a differential-difference equation for (1)-(3) 

f ig  + A y - - 0 ,  xCo~h, t E S ,  (4) 
dt 

with the additional conditions 

y(x ,  t ) = 0 ,  xE~h,  t E S ,  (5) 

g(~, O) = uo(x), xff~h. (6) 

Let us define the mesh operator A in the set of mesh functions that vanish on Yh, where 
Ay = Ay for y = 0, xEyh We write the problem (4)-(6) in the form of a first-order opera- 
tor equation 

dg 
- + A y =  0, t C S ,  (7) 

with the initial condition yO. Let us note that the representation A EAh, is correct for 
k= I 

A, Where Ak ---- A* ~<0.  

To construct the difference scheme for (7) we introduce a uniform mesh ~: o~ = {t = tj = ]% 
]----0, I, ...,. A4, AT = T}. We will later keep the notation yJ = y(tj'). ,~ 

REGULARIZATION OF DIFFERENCE SCHEMES 

We investigate the difference schemes for the problem formulated on the basis of the gen- 
eral theory of A. A. Samarskii [8]. Let us recall the fundamental result of the theory of sta- 
bility of difference schemes that we need. The canonical form of a two-layered difference 
scheme has the form [7, 8] 

B .y i+1-y i  + A y i = 0 ,  ] = 0 ,  1 . . . . .  M - - I ,  (8)  

with given yO If the operators B and A in (8) are self-adJoint and constant (independent of 
j), then according to [8] a necessary and sufficient condition for the 0-stability of the scheme 
(8) with any 0 > 0 is the bilateral operator inequality 

1 - - 9  B ~ A  ~ I +-----~P B. (9) 
T T 

An appropriate estimate of the stability according to the initial data has the form 

IIW§ = ( B / §  / §  i) w= ~< p 11~ liB, 

where ( . ,  .)  deno tes  the  s c a l a r  p roduc t  in  t h e  s e l e c t e d  mesh space .  
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When considering unstable problems of the type (1)-(3), it is meaningful to speak about 
the O-stabillty of appropriate difference schemes with just p = i + CT, where c is a positive 
constant independent of the lattice spacings in space and time. 

Let us consider an ordinary scheme with weights 

yi+l~yi -k-A(~yi+l-[-(1--a)yf)=O, 1 = 0 ,  1 . . . . .  M - - - 1  (lO) 

for (7). It has the canonical form (8) for B = E + ~TA, where E is the unit mesh operator. 
Direct confirmation of conditions (9) for the explicit scheme (o = 0) results in the fact 
that P = i + CoT, where the constant co is determined by the maximal eigenvalue of the op- 
erator A which has the order h -= according to [7], where h.-~hi.-~h2 .... .-~hn . Consequently, 
the mesh spacing in space will be the analog of the regularization parameter when applying 
the explicit scheme. 

Significantly greater possibilities are provided when using schemes with negative weight, 
which we designate superexplicit. Let a =-~T and ~ > 0. For ~ < 0 the operator B is posi- 
tive definite and, consequently, the right hand inequality in (9) is satisfied. It is easy 
to see that the left side of (9) will be satisfied if we chose p = i + T/~. Consequently, 
we obtain the necessary estimate for the stability of the difference solution 

The quantity a =--oT appears as regularization parameter when using the superexplicit schemes 

(lO). 
ECONOMICAL SCHEMES FOR MULTIDIMENSIONAL PROBLEMS 

The economy of the difference scheme is of great value [7] for the numerical solution 
of multidimensional evolutionary problems. The superexplicit scheme (I0) does not generally 
possess such a property since the mesh operator B = E -- ~A must be inverted on the upper lav- 
er. Taking account of the property of decomposability of the mesh operator A into pairwise 
commutatable self-adjoint operators A k economic schemes are easily written down for (7). It 
is natural to consider a factorized scheme which is written in the canonical form (8) with 

fi the operator B= (E--=Ak) It can be seen that such a scheme is also p-stable with p = k= I 
I + r/a. Let us note thafi it corresponds to application of a locally one-dimensional scheme 
for (7) of the form 

yf+kl~ __ yi+(h-1)l~ 
A~ (~k~+k/" + (l - -  ~h) j+(~--~)/~) = O, 

k = l ,  2 . . . . .  n, ]---0, 1 . . . . .  M - - I ,  

for ak = a = - - ~ -  

The p r o p o s e d  a p p r o a c h  was t e s t e d  on a number  o f  model  p r o b l e m s  a n a l o g o u s  t o  t h o s e  e x -  
amined  in  [ 3 ] .  P r e l i m i n a r y  d e e p e n i n g  o f  t h e  i n v e s t i g a t l o n  o f  t h e  p r o p e r t i e s  o f  t h e  method  
in a narrower class of problems is necessary for its utilization in practical computations. 
This certainly also refe=s to other approximate methods of solving inverse heat-conduction 

problems. 
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ANALYSIS OF THE ACCURACY OF SOLUTIONS OF THE TWO-DIMENSIONAL 

HEAT-CONDUCTION PROBLEM 

N. V. Kerov UDC 536.2 

The accuracy of solutions of the two-dimensional inverse heat-conduction problem 
is investigated. Exact and perturbed values of the temperature on the inner 
boundary are used as initial data. 

Study of the nonstationary heating of structural elements, which are bodies of spherical 
and cylindrical shape and subjected to a high-temperature flux, requires knowledge of the ex- 
ternal thermal loading conditions. The inverse problem, used to determine the conditions on 
the outer boundary according to the temperatures measured on the inner boundary, is examined 
below. In a number of cases it is necessary to take a two-dimensional heat-propagation model 
for bodies of spherical and cylindrical shape. For example, the two-dimenslonality is taken 
into account for an intensive change in the free-stream flux parameters along the body gen- 
erator and in the presence of anisotropy of the thermophysical properties [I]. A sufficient- 
ly large quantity of algorithms for solving inverse heat-transferproblems isknown. Algo- 
rithms have been developed for solving inverse problems in linear and nonlinear formulations; 
algorithms taking into account structural changes in the material. These are mainly problems 
in a one-dimensional formulation which are justified in many cases of practical importance. 
For instance, if the installation of special heat-flux sensors is possible structurally in 
geometrically complicated spherica! or cylindrical bodies, then in these cases thereis no 
need to solve tedious multidimensional inverse problems. The determination of heat fluxes 
by using known heat-flux sensors is based on the solution of one-dimensional inverse heat- 
transfer problems. However, there exist few examples of practical investigations of the heat- 
transfer processes in constructions when the one-dlmensional models do not adequately de- 
scribe the actual physical processes and the installation of the above-mentioned heat-flux 
sensors ~s not possible. Spherical and cylindrical shells of small radius [2] are an ex- 
ample of such constructions. If there is a strict approach to the physical problem of heat- 
ing, then a three-dimensional heat conductivity model is necessary to determine the external 
thermal boundary conditions for bodies of spherical and cylindrical shape. Unfortunately, a 
substantial growth of the calculations, resulting in large electronic computer time expendi- 
ture for the solution of the inverse problem, hinders the development of algorithms of in- 
verse problems in a three-dimensional formulation. If the multidimensional nature of the 
heat conductivity in a cylindrical body is caused mainly by small radii of curvature, then 
the two-dimensional model describes the heat-conduction process well for a negligible heat- 
flux gradient along the cylinder generatrix. A two-dimensional heat-conduction model is also 
realized in the axisymmetric flow around a spherical body and the problem to determine the 
thermal boundary conditions can be solve in a polar coordinate system. 

Let us consider a two-dimensional inverse boundary heat-conduction problem for a body of 
cylindrical shape. The heat flux qi(% ~) is delivered to the outer surface, where T is the 
time, ~ is the angle of rotation in the cylindrical coordinate system 0, r, ~. As a result 
of the action of heat flux, a temperature field T(r, ~, T) is realized in the body. We as- 
sume that the boundaries ~re heat insulated at ~=0, ~=~h and r = Rex. In this case the 
two-dimensional inverse heat-conduction problem is written as follows: 

Translated from !nzhenerno-Fizicheskii Zhurnal, Vol. 49, No. 
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